If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13y^2+16y-20=0
a = 13; b = 16; c = -20;
Δ = b2-4ac
Δ = 162-4·13·(-20)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-36}{2*13}=\frac{-52}{26} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+36}{2*13}=\frac{20}{26} =10/13 $
| w+8*w=3.0 | | 115-2.50x=95-2(40) | | -3x+12=22 | | -24r+16=-8r+40 | | -8(3x-2)=-8x+40 | | X=115-1.333333333y | | 3y+63=10y+14 | | X+4/3y=115 | | 3(6+4x)=8x-10 | | Y-18=x-13 | | -4(5-5n)-2(n-6)=-80 | | 172x=3.6 | | 5x-7+8=-24 | | 2050-x=198 | | 8=-7/4w | | 4x-20=-25+5x | | 20=r5 | | g-17/3=1 | | w+1/3=1 | | 10^3=x10^-6 | | -2x+8=-2(2x+4 | | 9p+5=8-2(p+3)-1 | | 28a^2-84a-35=0 | | 3x-2=3(2x+7)-26 | | 28a^2-84a-63=0 | | 6x^2+5=1+5x^2 | | 40+0.5*x=x | | 24+10/z=31 | | 19v=20v-14 | | 2(3x-1)-3(6-2x=8 | | 6x-3=7x=+1 | | t2+2t-12=0 |